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Quantum Logics and Convex Spaces

Sylvia PulmannovaÂ

Received June 24, 1998

An orthomodular s -lattice with rich set of states satisfying the property that every
affine functional from the set of states into the unit interval of the reals corresponds
to an expectational functional of exactly one real observable (so-called u-spectral
logic) is compared with the noncommutative spectral theory of Alfsen and Shultz.
Necessary and sufficient conditions are found under which these two approaches
are in correspondence.

INTRODUCTION

In the present paper, relations between orthomodular lattices and convex

spaces are investigated. Problems of this kind arise in attempts to find a

suitable mathematical foundation of quantum mechanics. In particular, the

following two approaches are of our main interest: the quantum logic approach
and the convexity approach.

The quantum logic approach was initiated by the well-known paper by

Birkhoff and von Neumann (1936), who considered the event structure of a

quantum mechanical system (the ``quantum logic’ ’ ) as a continuous geometry,

instead of a Boolean algebra describing the event structure of a classical

system. In a more recent development, the main tool describing the quantum
mechanical events has become a ( s -complete) orthomodular lattice, or, more

generally, a ( s -complete) orthomodular poset. The main difference between

classical and quantum event structures is that the latter need not be distributive,

which reflects the fact that there exist events that cannot be measured simulta-

neously, as manifested by the Heisenberg uncertainty relations. An axiomatic

model based on probabilistic ideas has been suggested by Mackey (1963).
Taking as basic concepts states and observables of a physical system, and
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postulating the existence of a probability distribution over Borel subsets of

a real line for a given observable in a given state, subjected to a few natural

axioms, one arrives at an orthomodular poset describing the event structure,
on which the (convex) set of states (generalized probability measures) is order

determining. In this setting, observables (physical quantities) are described by

s -homomorph isms from Borel subsets of a real line to the quantum logic.

Addition of observables is not defined unless the observables are compatible

(i.e., their ranges belong to the same Boolean subalgebra of the quantum logic,

such observables represent simultaneously measurable physical quantities).
Gudder (1965) proved that if the existence of sums of bounded observables

is postulated, where the addition is defined via linearity of expectational

functionals (similar to the Segal or C*-algebraic approach), the quantum

logic has a lattice structure. The existence and uniqueness of sums of bounded

observables requires that observables are uniquely determined by their expec-

tation values over a sufficiently large set of states. This property is nontrivial;
there are examples of quantum logics with ambient sets of states in which

observables are not uniquely determined by their expectations (Navara, 1995).

In the convex, or operational, approach to quantum mechanics, the

starting point is the convex set of states of a physical system. The convexity

assumption seems to be quite natural and corresponds to probablistic mixtures.
The convex set of states is used as a cone base of an ordered linear space.

The main tools then are a base norm space and an order unit space in

separating order and norm duality, which are supposed to represent the space

of (signed) measures and the space of observables. A connection with the

quantum logic approach has been shown by Alfsen and Shultz (1976), who

proved that if the corresponding spaces are in so-called spectral duality, then
the extreme points in the unit interval of the order unit space form an

orthomodular s -lattice, and all other elements of this space can be considered

as the usual bounded observables on it.

In the present paper, we start with so-called u-spectral logic, that is, an

orthomodular s -lattice with a rich state space, and assume that every convexity-

preserving mapping from the state space to the real unit interval coincides
to the expectation functional of exactly one observable. We prove that from

this unique assumption, which also has a clear physical interpretation, a

linear structure of bonded observables can be derived. Moreover, the set of

observables admits the structure of an order unit space, and we arrive at an

order unit and a base norm space derived from the state space which are in

separating order and norm duality. With the additional assumption of the
distributivity of the Segal product, we arrive at a Jordan algebra structure of

bounded observables.

In the next part of the paper, we give a brief review of the Alfsen and

Shultz theory, and we find a necessary and sufficient condition under which an



Quantum Logics and Convex Spaces 2305

order unit and base norm space in spectral duality give rise to a u-spectral logic.

Then we return to u-spectral logics and show that the corresponding

order unit and base norm spaces are in spectral duality if and only if a kind
of conditioning of states can be defined.

From the huge literature devoted to this subject, we cite only that which

is most useful to us. Our main sources are as follows: for the quantum logic

approach and orthomodular structures, Beltrametti and Cassinelli (1981), PtaÂk

and PulmannovaÂ(1991), and Varadarajan (1985); for the convexity approach,

Alfsen and Shultz (1976), Alfsen et al. (1978), Iochum (1984), and references
cited therein; for order unit and base norm spaces, Alfsen (1971), and Asimov

and Ellis (1980); for sum logics, Gudder (1965), Hudson and PulmannovaÂ

(1993); for u-spectral logics, RuÈ ttimann (1981), and PtaÂk and PulmannovaÂ

(1991); for conditioning of states, Pool (1968a,b), Guz (1980), and Edwards

and RuÈ ttimann (1990).

1. QUANTUM LOGICS, BASIC DEFINITIONS, AND RESULTS

A quantum logic (or more briefly a logic) (L, # , 8, 0, 1) is a s -complete

orthomodular poset. Thus, L is a partially ordered set with first and last
elements 0 and 1, respectively, and with an orthocomplementation 8: L ® L
such that (i) a # b Þ b8 # a8, (ii) a9 5 a, (iii) a Ú a8 5 1, (iv) for every

sequence (ai)i P N , L such that ai # a8j , i Þ j, Ú i P N ai exits in L, and (v)

a # b Þ b 5 a Ú (a8 Ù b). Here the symbols Ú and Ù denote the supremum

and infimum in L if they exist. The property (v) is the orthomodular law. If

L is a lattice, then L is an orthomodular s -lattice ( s -OML). Two elements
a, b in L are orthogonal (written a ’ b) if a # b8, and two elements a, b
in L are compatible if there are three pairwise orthogonal elements a1, b1, c
such that a 5 a1 Ú c and b 5 b1 Ú c.

A mapping F : L1 ® L2 is called a s -homomorphism if (i) a ’ b Þ
F (a) ’ F (b), (ii) F (1) 5 1, (iii) (ai)iP N , ai ’ aj whenever i Þ j Þ F (Ú iP N ai) 5
Ú i P N F (ai). If, in addition, F (a Ú b) 5 F (a) Ú F (b) [dually F (a Ù b) 5 F (a)
Ù F (b)], whenever a Ú b (dually a Ù b) exists in L, then we call F a lattice

s -homomorph ism. It turns out that every s -homomorphi sm from a Boolean

s -algebra into a logic is a lattice s -homomorphi sm.

A ( positive) measure on L is a mapping m: L ® R 1 such that m (a Ú
b) 5 m (a) 1 m (b) whenever a and b are orthogonal. A measure m is

Ð s -additive if (ai)i P N , L, ai ’ aj , i Þ j Þ m ( Ú i ai) 5 ( i m(ai)

Ð completely additive if m ( Ú i ai) 5 ( i m (ai) for any subset (ai) of

pairwise orthogonal elements of L such that the supremum Ú i ai exists

Ð a state if m (1) 5 1
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It is easy to see that set of all ( s -additive) states of L is s -convex, i.e., for

any positive countable partition of unity of R ( a i)i P N and any countable set

(mi)i P N of states, the mapping a ® ( i a imi (a) is a ( s -additive) state on L.
We say that L admits a rich set M of ( s -additive) states if

a, b P L, a Ü b Þ $ m P M: m (a) 5 1, m (b) Þ 1

In particular, for every nonzero a P L there is a state m P M with m (a) 5
1, that is, a rich set M is unital.

Let us consider a quantum logic L with a nonempty convex set of ( s -

additive) states M. For every m P M and a P R +, denote by a m the mapping
a m: L ® R +, ( a m)(a) 5 a m (a). Clearly, a m is a s -additive measure on L.

Denote V+(M) 5 { a m: a P [0, ` ), m P M}, V (M) 5 V+(M) 2
V+(M), V +

1(M) 5 { a m: a P [0, 1], m P M}. It is easy to see that V (M) is

an ordered linear space with a generating cone V+(M) and M is a convex

cone base (RuÈ ttimann, 1981). A state m P M is called pure if it is an extreme

point in M.

Let L be any logic and ( V , 6) be a measurable space. An observable
is a s -homomorph ism x: 6 ® L. If ( V , 6) [ ( R , @ ( R )), where @( R )
denotes the Borel sets, we obtain a real observable. If x is an observable and

m is s -additive state on L, then m + x: 6 ® [0, 1] is a probability measre

on 6, and the expectation of x in m is given by

m (x) 5 # V

v m (x (d v ))

if the integral exists. Moreover, if f : V ® R is a (6, @( R ))-measurable

function, then f (x) 5 x + f 2 1 is a (real) observable on L (called the function
f of x), and

m ( f (x)) 5 # R

m (x + f 2 1(dt))

if the integral exists.
A subset K of L is a sublogic of L if (i) 0 P K, (ii) a P K Þ a8 P K,

(iii) ai ’ aj (i Þ j) (ai)i P N , K Þ Ú i P N ai P K. If, in addition, a, b P K,

a Ú b exists in L Þ a Ú b P K, then K is called a lattice-sublogic of L. A

lattice-sublogic B such that B is a Boolean s -algebra with the partial order

and orthocomplementation inherited from L is a Boolean sublogic (or a

Boolean sub- s -algebra) of L. Two elements a, b P L are compatible iff they
are contained in a Boolean sublogic of L [equivalently, if a 5 (a Ù b) Ú (a Ù
b8), where the corresponding suprema and infima exists; see, e.g., Varadarajan

(1985) and PtaÂk and PulmannovaÂ(1991)]. We write aCb if a and b are

compatible. For any subset K of L, the set C (K) 5 {a P L: aCk " k P K}



Quantum Logics and Convex Spaces 2307

is the commutant of K. For any K , L, C (K) is a lattice sublogic of L. In

particular, C(L), the set of all ``absolutely compatibleº elements of L, is the

center of L. Equivalently, C (L) can be defined as the intersection of all

maximal Boolean sublogics (so-called blocks of L), hence C (L) is a Boolean

sub- s -algebra of L. Alternatively, C (L) can be defined as the set of all

elements a of L such that L can be decomposed into the direct sum of two

intervals L [ [0, a] % [0, a8]. A logic L is called irreducible if its center is

trivial, i.e., C (L) 5 {0, 1}. The set C (C (K)) is so-called bicommutant of a

subset K of L. If L is a lattice and K consists of mutually compatible elements,

then C (C (K)) is a Boolean sublogic of L (see, e.g., Varadarajan, 1985; PtaÂk

and PulmannovaÂ, 1991).

Observables x1, . . . , xn from ( V , 6) to L are compatible if their ranges

are contained in the same block of L. There is a functional calculus for

compatible observables (Varadarajan, 1985), namely if x1, . . . , xn are compati-

ble observables, then there is an observable u and measurable functions f1,

. . . , fn such that xi 5 u + f 2 1
i 5 : fi (u), i 5 1, . . . , n. In particular, if x, y are

compatible real observables, then the observables, r.x (r P R ), x2, x 1 y, ) x ) ,
exp (x 1 y), etc., can be defined. For example, the observable x 1 y is

defined as u + ( f 1 g) 2 1 5 ( f 1 g)(u) when x 5 u + f 2 1 5 f (u), y 5 u +
g 2 1 5 g (u). If m is any s -additive state on L, then

m (x 1 y) 5 # tm((x 1 y)(dt))

5 # tm(u + ( f 1 g) 2 1 (dt)

5 # ( f 1 g)(t)m (u (dt))

5 # f (t)m (u (dt)) 1 # g (t)m (u (dt))

5 # tm(u + f 2 1 (dt)) 1 # tm(u + g 2 1 (dt))

5 m (x) 1 m (y)

Every real observable x has a spectrum i.e., a smallest closed subset C

of R such that x (C) 5 1. We will denote by sp(x) the spectrum of x. An

observable is bounded if its spectrum is a compact subset of R . If sp(x) is a

subset of {0, 1}, we say that x is a proposition observable. To every a P L,

there is a proposition observable qa such that qa{1} 5 a. Let 2(L) denote
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the set of all bounded observables on L. We may assume L , 2(L). In

particular, q1, an observable with spectrum {1}, can be identified with the

element 1 in L, and q0, an observable with spectrum {0}, can be identified
with the element 0 in L. An observable is simple if its spectrum is finite.

In what follows, we consider a logic L with a rich s -convex set of s -

additive states M.

Lemma 1.1 (Gudder, 1965). A real observable x belongs to 2(L) if and
only if ) m (x) ) , ` for all m P M.

Proof. If x P 2(L), then ) m (x) ) , ` for all m P M. To prove the

converse, assume that x is not bounded, and let rn P sp(x) be such that ) rn) .
2n 1 1 (n P N ). Let Un 5 (rn 2 e , rn 1 e ), e , 1/2, be disjoint open intervals
in R . Put an 5 x (Un). Clearly, an Þ 0, and let mn P M be such that mn(an)

5 1. Since an are mutually orthogonal, we have mi (aj) 5 0 whenever i Þ j.
Convexity of M implies that the state m 5 ( 2 2 n mn belongs to M, and we have

m ( ) x ) ) 5 # ) t ) m (x (dt)) 5 o
n

2 2 n # Un

) t ) m(x (dt))

$ o
n

2 2 n(2n 1 1 2 1/2) 5 `

We will say that a real observable x on L is positive if m (x) $ 0 " m
P M. Let 2+(L) denote the set of all positive bounded observables, and we

denote by 21(L) the set of all x P 2+(L) such that m (x) # 1 for all m P M.

Lemma 1.2. Let L be a logic with a unital set M of states. The following

conditions are equivalent for x P 2(L):

(1) x is positive

(2) sp(x) , [0, ` )

(3) x 5 y2 for some y P 2(L)

Proof. (1) Þ (2): Let l , 0. By the definition of spectrum, if l P
sp(x), we have x (8( l )) Þ 0 for every open neighborhood of l . Hence, for

any e . 0, there is m P M with M (x ( l 2 e , l 1 e )) 5 1. But then m (x)

# l 1 e , and choosing e such that l 1 e , 0, we get m (x) , 0, contradicting

the assumption.
(2) Þ (3) follows by taking y 5 f (t), where f (t) 5 ! t on sp(x).

(3) Þ (1) is clear. n

Lemma 1.3. Every observable x P 2(L) can be written in the form x 5
x+ 2 x 2 , where x+ and x 2 are compatible observables in 2+(L).

Proof. Define f+(t) 5 max{0, t}, f 2 (t) 5 2 min{0, t}, t P R . Then

f + 2 f 2 5 id, the identity function on R , and applying the functional calculus,
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we get x 5 x + id 2 1 5 x + ( f + 2 f 2 ) 2 1 5 x + ( f +) 2 1 2 x + ( f 2 ) 2 1. Putting

x+ 5 x + ( f +) 2 1, x 2 5 x + ( f 2 ) 2 1, we obtain the desired decomposition. n

Lemma 1.4. Let L be a logic with a unital set M of s -additive states.
Then for any x P 2(L),

sup{ ) m (x) ) : m P M} 5 max{ ) t ) : t P sp(x)}

Proof. For m P M we have m (x) 5 * sp(x) tm(x (dt)). Since m (x (.)) is a

probability measure on @( R ), we may conclude that inf sp(x) # m (x) # max

sp(x). Let d 5 max { ) t ) : t P sp(x)}; then ) m (x) ) # d for all m P M.

Without any loss of generality, we may assume that d 5 maxsp(x). For

any e . 0 we have a 5 x ([ d 2 e , d ]) Þ 0. Unitality of M implies that there

is m P M with m (a) 5 1, so that m (x) 5 * [ d 2 e , d ] tm(x (dt)) . d 2 e . Hence
d 5 sup{ ) m (x) ) : m P M}. n

We denote

i x i 1 5 sup{ ) m (x) ) : m P M} (1.1)

and

i x i 2 5 max{ ) t ) : t P sp(x)} (1.2)

By Lemma 1.4, i x i 1 5 i x i 2 5 : i x i . In the sequel we will prove that,

under certain conditions, i x i is a norm on 2(L). Now we can only prove the

following statement.

Lemma 1.5. On every maximal compatible subset of 2(L), the function

x ® i x i is a norm. Moreover, the set of simple observables is i . i -dense in 2(L).

Proof. If x, y, z are compatible observables, then they are Borel functions

of one observable u, say. This implies that x 1 y is compatible with z.
Moreover, for every m P M, m (x 1 y) 5 m (x) 1 m (y). Therefore, a maximal

subset of pairwise compatible observables is a real linear space and, using

the definition of i . i by (1.1), we prove that i x 1 y i # i x i 1 i y i . If i x i 5
0, then by the definition of i . i by (1.2), sp(x) 5 {0}, hence x 5 q0. Clearly,

i x i $ 0 and i a x i 5 ) a ) i x i for any real a . It follows that x ® i x i is a norm.

For every x P 2(L), we can write x 5 id R (x), id R (t) 5 t, t, P R . Assume

that x P 2+(L); then there is a nondecreasing sequence of simple nonnegative

functions fn such that fn ® id R in the supremum norm of functions. This

implies that i fn(x) 2 x i ® 0, where ( fn(x)) are simple observables. [See, e.g.,
PtaÂk and PulmannovaÂ(1991), Chapter 4, for the details.]

Let x P 2(L) be arbitrary. Taking into account that every x P 2(L) can

be decomposed into positive and negative parts, we can find a sequence of

simple functions gn such that i gn(x) 2 x i ® 0. n
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For any x P 2(L), the mapping m j m (x) is a linear functional on

V (M). Denote for v P V (M),

i v i 5 sup{v (x) ) : x P 21(L)}

It is easy to see that i .i is a norm on V (M) and, moreover, i m i 5 m (1) 5 1

for all m P M.

A weak topology on V (M) will be defined by the base of neighborhoods

U (v0, x1, . . . , xn , e ) 5 {v P V (M): | v (xi) 2 v0(xi) ) # e , i 5 1, 2, . . . , n}

where v0, v P V (M), x P 21(L), e . 0. Clearly, a net {v a } in V (M) weakly

converges to v P V (M) if and only if v a (x) ® v (x) " x P 2(L).
A linear transformation T: V (M) ® V (M) is weakly continuous if v a ®

v Þ Tv a ® Tv. Moreover, T is called positive if T (V+(M)) , V+(M).

Lemma 1.6. A net {v a } , V (M) weakly converges to v P V (M) if and

only if v a (a) ® v (a) for all a P L.

Proof. Necessity is clear. To prove sufficiency, assume that v a (a) ®
v (a) for any a P L. For any simple observable x P 2(L), x 5 ( n

i 5 1 tiqai,

where ai , i 5 1, . . . , n are mutually orthogonal elements of L, we then have

v a (x) ® v (x). Since, by Lemma 1.2, the set of simple observables is i .i -

dense in 2(L), the result follows. n

The set M induces a weak topology on the set 2(L) in the following

way. For any x1 P 2(L), the base of open neighborhoods is formed by finite

intersections of the sets 8(x1, m, e ) 5 {x P 2(L): ) m (x1) 2 m (x) ) # e }.

Accordingly, a linear transformation T: 2(L) ® 2(L) is weakly continuous
if x a ® x Þ Tx a ® Tx for any net (x a ) weakly convering to x, and T is
positive if T (2+(L)) , 2+(L). A positive linear transformation T of 2(L) is

called normal if x a - x Þ Tx a - Tx, where x a - x means that the net x a is

nondecreasing and has x for supremum. Clearly, a positive, weakly continuous

linear transformation T is normal.

In the special case when the set M coincides with the set of all s -

additive states on L, we have the following characterization of normal positive
transformations of 2(L).

Proposition 1.7. Let M coincide with the set of all s -additive states on

L. Then a positive transformation T of 2(L) is normal if and only if

(1) T1 5 1

(2) T ( Ú ai) 5 ( Tai for any sequence (ai)i of mutually orthogonal elements
of L.

Proof. Necessity easily follows from the fact that (identifying ai with

qai), Ú n
i 5 1 ai 5 ( n

i 5 1 qai 5 ( n
i 5 1 ai " n P N . To prove sufficiency, assume that
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T satisfies the latter properties. Then we have T (21(L)) , 21(L). Define, for

any m P M, T #(m): L ® [0, 1] by T #(m)(a) 5 m (Ta). For any sequence (ai)

of mutually orthogonal elements of L, T #(m)( Ú ai) 5 m (T ( Ú ai)) 5 m ( ( Tai)
5 m (supn ( n

i 5 1 Tai) 5 supn( ( n
i 5 1 m (Tai)) 5 ( m (Tai) 5 ( T#(m)(ai); hence

T#(m) is a s -additive state on L. Now x a - x means that m (x a ) - m (x) for

all m P M, hence T#(m)(x a ) - T#(m)(x) for all m P M, and hence m (T (x a ))

- m (T (x)) for all m P M. n

2. U-SPECTRAL LOGICS

A logic L with a rich s -convex set of states M is called u-spectral if

for every affine functional f : M ® [0, 1] there is a unique real observable

x such that f (m) 5 m (x) for every m P M.

Projection lattices of von Neumann algebras yield an example of u-
spectral logics (RuÈ ttimann, 1981).

In what follows, we assume that (L, M ) is a u-spectral logic.

Lemma 2.1. If x, y P 2(L), and m (x) 5 m (y) for all m P M, then x 5 y.

Proof. Observe that for any observable x, y 5 i x i q1 1 x P 2+(L), and

y/ i y i P 21(L). Therefore, m j m (y/ i y i ) defines an affine functional on M
with values in [0, 1], hence the observable y/ i y i , hence also y is uniquely

defined by its expectation values m (y), m P M, and the same is true for

x 5 y 2 i x i q1. n
Lemma 2.1 claims that u-spectral logic has the Uniqueness property

(Gudder, 1966). In the next proposition we show that also the Existence
property is satisfied. It follows that L is a lattice (Gudder, 1966).

Proposition 2.2. Let (L, M ) be a u-spectral logic. The set 2(L) of

all bounded real observables can be equipped with a structure of a real

linear space.

Proof. If x and y are compatible, then x 1 y exists by the functional
calculus, and we have m (x 1 y) 5 m (x) 1 m ( y) for all m P M. In particular,

q0 1 x 5 x for any x P 2(L).

Assume first that x, y P 21(L). For any fixed a P (0, 1), the mapping

n (m) 5 a m (x) 1 (1 2 a )m ( y) is an affine functional from M to [0, 1].

Therefore there is a unique observable z P 21(L) such that, for any m P M,

m (x) 5 a m (x) 1 (1 2 a )m ( y)

We define z 5 a x 1 (1 2 a )y.
Now let x, y P 2+(L). Without loss of generality we may assume that

x Þ 0 and y Þ 0. Then x / i x i P 21(L), y/ i y i P 21(L). Choosing a 5 i x i /
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( i x i 1 i y i ), we obtain that z 5 a x/ i x i 1 (1 2 a )y/ i y i is defined, and put

x 1 y 5 ( i x i 1 i y i )z.
Now for any x, y P 2(L) the observable z 5 ( i x i q1 1 x) 1 ( i y i q1 1

y) is defined, and also w 5 z 2 ( i x i 1 i y i )q1 is defined, and we put w 5
x 1 y. Clearly, m (w) 5 m (x) 1 m ( y) for all m P M.

It is easy to check that (2(L), 1 ) with the above-defined operation 1 ,

and with the real multiplication defined by functional calculus for observables,

forms a real linear space. n

Clearly, 2+(L) is a positive cone in 2(L). Moreover, every observable
can be uniquely decomposed in the form x 5 x+ 2 x 2 , where x+ and x 2 , the

positive and negative parts of x, are positive observables defined by the

functional calculus (Lemma 1.3). Therefore, 2+(L) is a generating cone for

2(L), and so 2(L) is a directed real linear space. The following proposition

shows that it is a normed space as well.

Proposition 2.3. The function x j i x i defined in two equivalent ways
by (1.1) and (1.2) is a norm on 2(L).

Proof. As a direct consequence of the definition, we obtain that i x i $
0, i x i 5 0 Þ x 5 q0, and i a x i 5 ) a ) i x i for any real a . It remains to prove

i x 1 y i # i x i 1 i y i . We have

i x 1 y i 5 sup{ ) m (x 1 y) ) : m P M}

# sup{ ) m (x) ) 1 ) m ( y) ) : m P M}

# sup { ) m (x) ) : m P M} 1 sup{ ) m (y) ) : M P M}

5 i x i 1 i y i n

Lemma 2.4. The set 2(L) is monotone complete, that is, if {x a } is a

nondecreasing net in 2(L) bounded above, then it has a supremum x P 2(L).

Moreover, x a converges to x in weak topology.

Proof. Without loss of generality we may assume that x a $ 0, and let

i xa i # K, K . 0. For each m P M, the net {m (x a )/K} is nondecreasing and

bounded above by 1, therefore it has a limit, n (m), say. The mapping n :

M ® [0, 1] is an affine functional, therefore there is y P 21(L) such that n (m)

5 m (y). Writing x 5 Ky, we see that {xa } converges to x in weak topology. It
remains to prove that x is the supremum of {xa }. Clearly, xa # x " a , and if xa

# z " a , then for any m P M, lim a m (x a ) 5 m (x) # m (z), hence x # z. n

Proposition 2.5. The set 2(L) is norm-complete.

Proof. Let {xn}
`
0 be a Cauchy sequence from 2(L), and assume without
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loss of generality that i xn 2 xn 2 1 i # 2 2 n for n 5 1, 2, . . . . Writing

yn 5 x0 1 o
j 5 1

n

[(xj 2 xj 2 1) 1 2 2 jq1] 5 xn 1 (1 2 2 2 n)q1

we get an increasing net {yn}
`
0 such that i yn 2 yn 2 1 i # 2 2 n 1 1. Since i yn i #

i y0 i 1 i y1 2 y0 i 1 ? ? ? 1 i yn 2 yn 2 1 i # i y0 i 1 1 for all n, {yn} is bounded
above, so by Lemma 2.4, it has a pointwise limit y in 2(L). In fact, {yn} is

norm-Cauchy, and i y 2 yn i # 2 2 n 1 1. Therefore

i ( y 2 q1) 2 xn i 5 i ( y 2 yn) 2 2 2 nq1 i # 3.2 2 n

Hence {xn} converges in norm to the limit y 2 q1. n

The set 21(L) : 5 {x P 2+(L): i x i # 1} with the partial operation %
defined if and only if x 1 y P 21(L) and then x % y 5 x 1 y becomes an
interval effect algebra with the ambient group 2(L) (Foulis and Bennett,

1994). The following lemma shows that there is an analogy of a range

projection in von Neumannn algebras for the elements in 21(L).

Lemma 2.6. To every y P 21(L), there is a unique element a P L such

that m (y) 5 0 if and only if m (a) 5 0.

Proof. We have, for any m P M, m(y) 5 0 iff m(q1 2 y) 5
* 1

o tm((q1 2 y)(dt)) 5 1 iff (q1 2 y){1} 5 1 iff (q1 2 y){1}8 5 0. Putting
a 5 * 1

o (q1 2 y) ({1})8, we obtain the existence statement; uniqueness

is clear. n

We also have m (y) 5 1 iff m ( y {1}) 5 1.

According to Gudder (1996), the states in M have the Jauch±Piron
property, i.e., m (a) 5 1 and m (b) 5 1 imply m(a Ù b) 5 1. We have the

following equivalent characterzations of ``sharpº elements of 21(L).

Lemma 2.7. Let x P 21(L). The following statements are equivalent:

(i) x P 21(L) is a proposition observable

(ii) x is an extreme point in the convex set 21(L)

(iii) x2 5 x
(iv) x Ù (1 2 x) 5 0
(v) x Ú (1 2 x) 5 1

Proof. (i) Þ (ii): Assume that x 5 a y 1 (1 2 a )z with y, z P 21(L).
Clearly m (x) 5 0, 1 iff m (y) 5 m (z) 5 0, 1, respectively. Therefore, by the

richness and the Jauch±Piron property of M, x ({1}) 5 y ({1}) Ù z ({1}),

x ({0}) 5 y ({0}) Ù z ({0}). Since x is a proposition observable, we have

1 5 x ({0}) Ú x ({1}) 5 y ({0}) Ù z ({0}) Ú y ({1}) Ù z ({1})

# y ({0}) Ú y ({1}), z ({0}), Ú z ({1})
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whence y, z are also proposition observables. Moreover, from

x ({1}) 5 y ({1}) Ù z ({1}) # y ({1}), z ({1})

# y ({1}) Ú z ({1}) 5 ( y ({0}) Ù z ({0}))8 5 x ({0})8 5 x ({1})

it follows that x ({1}) 5 y ({1}) 5 z ({1}), hence x 5 y 5 z. This means that

x is an extreme point.

(ii) Þ (iii) Let x be an extreme point of 21(L) and consider the functions

f (t) 5 t2 and c (t) 5 2t 2 t2 defined for t P [0, 1]. These functions satisfy
1±2 f 1 1±2 c 5 id. Since sp(x) , [0, 1], we can form functions f (x) and c (x)

and, according to the functional calculus, we have x 5 1±2 f (x) 1 1±2 c (x). Since

x is an extreme point, we must have f (x) 5 c (x). From this (iii) follows.

(iii) Þ (iv) Let x2 5 x, and assume that there is x P 21(L) such that

z # x and z # (1 2 x). Using Lemma 2.6, we obtain

x {1} # (1 2 x) {0} # z {0}, x {0} # z {0}

hence 1 5 x {1} Ú x {0} # z {0}, which implies that z {0} 5 1, i.e., z 5
q0 5 0.

(iv) [ (v) holds by duality.

(iv) Þ (iii) If x Ù (1 2 x) 5 0, then 0 # x2 # x # 1 implies x 2 x2

5 x(1 2 x) P 21(L), x 2 x2 # x, and similary, (1 2 x) 2 (1 2 x)2 5
x 2 x2 # 1 2 x, which yields x2 5 x.

(iii) Þ (i) By the continuity of f (t) 5 t2, sp(x2) 5 sp(x)2, and from

x 5 x2 it follows that sp(x) , {0, 1}. n

We recall (Alfsen, 1971; Asimov and Ellis, 1980) that an order-unit
space is a partially ordered normed vector space with a distinguished order
unit e which is Archimedean in that na # e for n 5 1, 2, . . . implies a #
0, and with the norm given by

i a i 5 inf{ l . 0: 2 l e # a # l e} (2.1)

A linear functional p on an order-unit space (A, e) is called a state if

p $ 0 and p (e) 5 1. The states of (A, e) form a weakly compact convex
subset of A* which is called the state space of (A, e) and will be denoted

by S (A, e) or simply by S. The crucial property of order-unit spaces is that

there exist sufficiently many states in the following sense:

For every a P A, a $ 0 iff p (a) $ 0 for all p P S and, moreover,

i a i 5 sup{ ) p (a) ) : p P S} (Alfsen and Shultz, 1976, Proposition II.1.7).

Recall that a convex subset K of a hyperplane H not passing through
the origin of a vector space E is said to be a base for the cone C 5 ø l $ 0

l K. A convex subet B of a vector space E is radially compact if B ù L is

a closed and bounded segment for every line L through the origin of E. We

shall use the term base-norm space and the notation (E, K ) to denote a
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directed vector space E for which E+ has a base K such that B 5 conv

(K ø 2 K) is radially compact, considered as a normed space in the base-
norm defined by the Minkowski functional

i x i 5 inf{ l $ 0: x P l B}

If (E, K) is a base-norm space, then by definition there is a linear

functional f on E such that K , f 2 1 (1). By the directedness f is uniquely

determined. It is called the linear functional that carries K, and will be

denoted by eK. The norm is additive on E +; moreover, i x i 5 eK(x) for x P
e+ (Alfsen and Shultz, 1976, Proposition II.1.13).

Recall that every element x of a base-norm space (E, K ) admits a

decomposition x 5 y 2 z, where y, z $ 0 and i x i 5 i y i 1 i z i .

It is a well-known fact that the dual of an order unit space (A, e) is the

base-norm space (A*, S) and the dual of a base-norm space (E, K) is the

order-unit space (E*, eK).

Theorem 2.8. Let (L, M) be a u-spectral logic. The set 2(L) of bounded
real observables endowed with the norm i x i 5 sup{ ) m (x) ) : m P M} 5
sup{ ) t ) : t P sp(x)} and ordering defined by x $ 0 iff m (x) $ 0 for all m P
M becomes a norm complete order unit space in which the order unit is the

observable q1 and the following condition is satisfied:

2 1 # a # 1 implies 0 # a2 # 1 (2.2)

Proof. We follow the pattern from Hudson and PulmannovaÂ(1993).

Proposition 5.2.
Clearly, nx # q1 for all n P N iff nm(x) # 1 for all n P N , hence m (x)

5 0 " m P M, hence x 5 q0 5 0. This shows the Archimedean property.

In a similar way, 2 l q1 # x # l q1 implies ) m (x) ) # l for all m P M,

hence i x i # inf{ l . 0: 2 l q1 # x # l q1}. Conversely, since ) m (x) ) # i x i
for all m P M, it follows that 2 i x i q1 # x # i x i q1, and (2.1) follows.

Moreover, 2 q1 # x # q1 implies ) m (x) ) # 1 for all m P M, hence

sp(x) , [ 2 1, 1]. But then sp(x2) , [0, 1], that is, 0 # x2 # q1. This proves

that (2.2) holds.

Norm completeness follows by Proposition 2.5.

3. SEGAL PRODUCT

Let (L, M) be a u-spectral logic. Define the Segal product on 2(L) by

x.y 5
1

4
[(x 1 y)2 2 (x 2 y)2] (3.1)
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The Segal product is always commutative, but not necessarily distributive.

If observables x, y, z are mutually compatible, then by the functional calculus

they can be considered respectively as Borel functions f, g, h of an observable
u, and therefore the distributivity conditions x.(y 1 z) 5 x.y 1 x.z is satisfied.

Since the observables q1 and q0 are compatible with any observable x, it

follows that x.q0 5 q0, x.q1 5 x.

Lemma 3.1. (Hudson and PulmannovaÂ, 1993). If the Segal product is

distributive, it is (real) bilinear.

Proof. To sketch the proof, observe that by commutativity and distributiv-

ity it is sufficient to prove that, for arbitrary x. y P 2(L) and r P R ,

(rx).y 5 r(x.y) (3.2)

For any m P M, m (rx) 5 * r l m (x (d l )) 5 rm(x). Applying it to a

natural number n, we get nx 5 x 1 ? ? ? 1 x (n times), and (3.2) then follows
by distributivity. Replacing x by (1/n)x, it can be seen that (3.2) also holds

if r is rational. Using the Schwarz inequality m (u.v)2 # m (u2)m (v2) and a

sequence of rationals {qn} converging to a real number r, we obtain m ((rx).y) 5
limnm ((qnx).y) 5 limnm (qn(x.y)) 5 m (r (x.y)), and since m P M is arbitrary,

we deduce that (3.2) is satisfied. n

In what follows, we put into relation u-spectral logics with order unit

spaces and JB-algebras.

We recall that a (real) Jordan algebra is a real vector space A equipped

with a bilinear product (a, b) ® a + b such that, for all a, b P A, the

following hold:

(i) a + b 5 b + a
(ii) a + (b + a2) 5 (a + b) + a2

A JB-algebra is a Jordan Algebra A over the reals with identity element

1 equipped with a complete norm satisfying the following requirements for

a, b P A:

(i) i a + b i # i a i i b i
(ii) i a2 i 5 i a i 2

(iii) i a2 i # i a2 1 b2 i
Relations between order unit spaces and JB-algebras are stated in the

following theorem.

Theorem 3.2 (Alfsen et al., 1978). If A is a JB-algebra, then the set A2

of all squares in A is a proper cone organizing A to a (norm) complete order-
unit space whose distinguished order unit is the multiplicative identity element

and whose norm is the given one, and such that condition (2.1) holds.

Conversely, if A is a complete order-unit space equipped with a Jordan

product for which the distinguished order unit acts as an identity element
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and such that requirement (2.2) is satisfied, then A is a JB-algebra in the

order-unit norm (2.1).

Theorem 3.3. If the Segal product in the set 2(L) of bounded real
observables on a u-spectral logic (L, M ) is distributive, then 2(L) is a JB-

algebra.

Proof. It is easy to see that conditions (i)±(iii) from the definition of a

JB-algebra are satisfied, even without the distributivity assumption, Indeed,

using the fact that sp(x2) 5 sp(x)2, (ii) follows by the second definition of

the norm i x i . Similarly, (iii) follows at once from the first definition of the
norm. To prove (i), we may assume without loss of generality that i x i # 1,

i y i # 1. Using (ii) and the first definition of the norm, we get

i x.y i 5 Z Z 14 (x 1 y)2 2
1

4
(x 2 y)2 Z Z

#
1

4
max( i x 1 y i 2, i x 2 y i 2)

# 1

Owing to Theorem 3.2 and Theorem 2.8, it suffices to prove that distribu-

tive Segal product is Jordan product. It is bilinear by Lemma 3.1 and clearly
commutative. In establishing the Jordan property x.(y.x2) 5 (x.y).x2, we follow

the pattern of Hudson and PulmannovaÂ(1993), Theorem 5.4. From i x.y i #
i x i i y i we see that multiplication is norm continuous. From the functional

calculus for compatible observables it follows that simple observables are

norm dense in 2(L). Therefore we may assume that x is simple, that is, x 5
( n

i 5 1 l iqai for real numbers l 1, . . . , l n and mutually orthogonal a1, . . . , an

P L. Then the Jordan property is equivalent to

o
i,j 5 1

n

l i l 2
j (qai.y).qaj 5 o

i,j 5 1

n

l i l 2
j qaj.(y.qaj)

and hence to

(u.y).v 5 u.(y.v) (3.3)

for orthogonal u, v P L. From the functional calculus for a single observable it
is clear that the subalgebra generated by a single element is always associative,

hence the 2(L) is a power-associative algebra. It then follows from Lemma

5.2 in Schafer (1996) that (3.3) holds. Hence 2(L) endowed with the Segal

product is a Jordan algebra. n
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4. A COMPARISON WITH THE ALFSEN AND SHULTZ
THEORY

We recall that in Alfsen and Schultz (1976) an order-unit space (A, e)
and a base-norm space (V, K) in separating order and norm duality are

considered. That is, there is a bilinear form ^ , & : A 3 V ® R such that the

following conditions are satisfied:

a $ 0 Û ^ a, v & $ 0 for all v $ 0
(4.1)

v $ 0 Û ^ a, v & $ 0 for all a $ 0

and

i a i # 1 Û ) ^ a, v & ) # 1 whenever i v i # 1
(4.2)

i v i # 1 Û ) ^ a, v & ) # 1 whenever i a i # 1

We shall use the terms ``weak’ ’ and ``weakly’ ’ to denote the weak

topologies defined to A and V by this duality.
We shall be concerned with weakly continuous positive projections with

norm at most one P: X ® X, where X is either A or V (here ``projection’ ’

means any idempotent map). For such projections we define

ker+P 5 (kerP) ù X +, im+P 5 (imP) ù X + (4.3)

We shall denote by P* the dual projection of P. The dual projection will also

be of norm at most one in virtue of norm duality.

Two weakly continuous positive projections P, Q: X ® X are said to be

quasicomplementary if

ker+P 5 im+Q, im+P 5 ker+Q (4.4)

We shall also say that Q is a quasicomplement of P and vice versa.

A projection P: X ® X is said to be smooth (with respect to the given

duality) if it is weakly continuous, positive, and satisfies the requirement

y P Y +, y 5 0 on ker+P Þ y 5 0 on ker P (4.5)

According to Alfsen and Shultz (1976), a projection on either of the

two spaces A or V which is smooth with norm at most 1 and admits a smooth

quasicomplement with norm at most 1 is said to be a P-projection . The

quasicomplement of a P-projection is unique, and we denote it by P8. Clearly

P8 is also a P-projectionn.
For a given P-projection on A, the element Pe will be in the order

interval [0, e], and such elements Pe will be called projective units of A.

Moreover, the set FP 5 (imP*) ù K will be a face of K, and such faces FP

will be called projective faces of K. The set of all P-projections on A will
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be denoted by 3, the set of all projective units in A by 8, and the set of all

projective faces of K by ^.

The relations between P-projections, projective units, and projective
faces can be seen explicitly from the following theorem (cf. Theorem 2.17

in Alfsen and Shultz, 1976).

Theorem 4.1. Let P be a P-projection on A with associated projective

unit Pe and projective face FP 5 (imP*) ù K. Then

Pe 5 inf{b P A: x Fp # b # 1 on K} (4.6)

and

FP 5 { r P K: ^ Pe, r & 5 1}
(4.7)

F #
P 5 { r P K: ^ Pe, r & 5 0}

For given a P A+

Pa 5 a on FP , Pa 5 0 on F #
P (4.8)

and Pa is the unique element of A+ with this property. Specifically, Pa is

given by the formula

Pa 5 sup{b P A+: b # a on FP , b 5 0 on F #
P}

(4.9)

5 inf{b P A+: b $ a on FP , b 5 0 on F #
P}

As a corollary, the sets 3, 8, ^ are canonically order isomorphic.
Specifically, we have a commutative diagram of order-preserving maps where

3 ® 8 is given by P ® Pe, 8 ® ^ is given by the first equality of (4.7),

and ^ ® 3 is given by (4.9). Moreover, the operations P ® P8, Pe ® e 2
Pe, and F ® F# will correspond to each other under these isomorphisms

(Alfsen and Shultz, 1976, Corollary 2.18).

Recall that a face F of K is exposed if there is a weakly closed affine
hyperplane H in V such that F 5 H ù K. This means that there shall exist

an a P A and an a P R such that

^ a, r & 5 a for r P F, ^ a, r & . a for r P K \ F

Note that by (4.7) every projective face is exposed (Alfsen and Shultz, 1976,

Proposition 2.15).

In accordance with Alfsen and Shultz (1976), we shall impose the
following two requirements:

A is pointwise monotone s -complete (4.10)

Every exposed face of K is projective (4.11)
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The requirement (4.10) means that if {an} is an increasing sequence

from A which is bounded above, then there exists a P A such that ^ a, r & 5
supn ^ an , r & for all r P K. In this case we shall write a 5 supnan. By
duality, the same statement holds for the pointwise infimum infnan of a

descending sequence.

The requirement (4.11) is a strong one, but we will see later that it is

implied by a spectral axiom.

The following result has been obtained in Alfsen and Shultz (1976).

Theorem 4.2 (Alfsen and Shultz, 1976, Theorem 4.5). If the conditions

(4.10) and (4.11) are satisfied, then the set 3 is a a -complete orthomodular

lattice, that is, for P and Q in 3:

(i) P9 5 P
(ii) P # Q Þ Q8 # P8

(iii) P # Q Þ Q 5 P 1 (Q Ù P8)
(iv) (Pi)i , P i # P 8j (i Þ j) Þ Ú iPi P 3

Moreover, there is an analogue of the range projection in a von Neumann
algebra. We use the notation face(a) to denote the smallest face of A+ con-

taining a given element a of A+.

Proposition 4.3. For each a P A+ there exists a smallest projective unit h
such that a P face(h), and h is the unique element of 8 such that for r P K

^ h, r & 5 0 Û ^ a, r & 5 0 (4.12)

Moreover, a # i a i h.

For given a P A+ we shall denote the projective unit h of Proposition
4.3 by rp(a).

The following definition of compatibility has been introduced (Alfsen

and Shultz, 1976, p. 32): A P-projection P on A and an element a of A
are said to be compatible if Pa 1 P8a 5 a. We also have the following

characterization: P is compatible with a iff Pa # a.

The next proposition shows the relations between the compatiblity of a
P-projection P and the projective unit associated with a P-projection Q.

Proposition 4.4 (Alfsen and Shultz, 1976, Proposition 5.2). Let P and

Q be P-projections; then the following are equivalent:

(i) PQ is a P-projection
(ii) PQ 5 P Ù Q, i.e., PQ is the g.l.b. of P and Q in 3

(iii) P is compatible with Qe
(iv) Q is compatible with Pe
(v) QP 5 PQ



Quantum Logics and Convex Spaces 2321

Proposition 4.4 allows us to introduce the following definition: two

projections P and Q are said to be compatible if they satisfy the equivalent

conditions (i)±(v) of Proposition 4.4, and this notion of compatibility is also
transferred from 3 to the sets 8 and ^ which are order isomorphic with 3.

The following proposition shows that the notion of compatibility coincides

with the usual compatibility in orthomodular lattices. [We recall that two P-

projections are said to be orthogonal if P # Q8, and write P ’ Q (Alfsen

and Shultz, 1976, p. 28).]

Proposition 4.5. Two projections P and Q are compatible iff there exist

mutually orthogonal P-projections, R, S, T such that

P 5 R 1 S, Q 5 S 1 T (4.13)

If such a decomposition eixsts, it is unique; in fact

R 5 P Ù Q8, S 5 P Ù Q, T 5 Q Ù P8

To summarize the results obtained so far, under conditions (4.10) and

(4.11), the set 8, which is a subset of A, is a s -complete orthomodular lattice.
Moreover, it can be shown that every state is Jauch±Piron. Indeed, let a, b
P 8; then there are P-projections P, Q such that a 5 Pe, b 5 Qe. If m (a)

5 ^ Pe, m & 5 1, m (b) 5 ^ Qe, m & 5 1, then by (4.7), m P FP , m P FQ , and

Fa Ù b 5 Fa ù Fb by Alfsen and Shultz (1976), Lemma 4.1. This entails m (a
Ù b) 5 1. As a corollary, the statement of Lemma 2.7 holds (compare with

Alfsen and Shultz, 1976, Proposition 8.7).
In the next step, we need to bring into relation the elements of A with

bounded observables on 8. This is done by ``spectral axioms’ ’ introduced

in Alfsen and Shultz (1976). We note that condition (4.10), which says that

A is pointwise monotone s -complete, entails that A is norm complete (Alfsen

and Shultz, 1976, Proposition 6.1).

Let (A, E) and (V, K) be order-unit and base-norm space, respectively,
which are in separating order and norm duality. The spaces A and V will be

said to be in weak spectral duality if A is monotone pointwise s -complete

and if for every a P A and l P R there exists a projective face F compatible

with a such that

a # l on F, a . l on F # (4.14)

By definition weak spectral duality implies (4.10), and by Alfsen

and Shultz (1976), Proposition 6.2, it also implies (4.11), that is, if (A,

e) and (V, K) are in weak spectral duality, then every exposed face of K
is projective.

The following concept of orthogonality for elements of A+, which is of

interest in itself, enables us to reformulate the definition of weak spectral

duality.
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Let the conditions (4.10) and (4.11) be satisfied. Then two elements a,

b P A+ are said to be orthogonal , in symbols a ’ b, if rp(a) ’ rp(b).

Proposition 4.6 (Alfsen and Shultz, 1976, Proposition 6.3). Let the

conditions (4.10) and (4.11) be satisfied; then A and V will be in a weak

spectral duality iff every element a P A admits a decomposition a 5 a1 2
a2 with a1, a2 P A+ and a1 ’ a2.

Assume that A and V are in weak spectral duality. A family {e l } l P R of
projective units is said to be a spectral family if for l , m P R we have

the following:

(i) e l # e m when l # m
(ii) e l 5 Ù m . l e m

(iii) Ù l P R e l 5 0, Ú l P R e l 5 e

We shall say that such a family has compact support if there exist

a , b P R such that e l 5 0 for all l # a and e l 5 e for all l $ b .

A spectral family {e l } is said to be a spectral resolution for a given

element a P A if for every l P R the projective face F l corresponding to
e l is compatible with a and satisfies

a # l on F l , a . l on F #
l (4.15)

We shall use the term partition of [ a , b ] to denote a finite sequence g 5
{ l i}

n
i 5 0 such that

a 5 l 0 , l 1 , . . . , l n 5 b

We shall use the symbol i g i to denote the norm of the partition, i.e., i g i 5
max ) l i 2 l i 2 1 ) .

Theorem 4.7 (Alfsen and Shultz, 1976, Theorem 6.8 and Corollaries 6.9

and 6.10). Assume A and V are in weak spectral duality. Then each a P A
will admit a spectral resolution, and if {e l } is any spectral resolution of a, then

a 5 # l de l (4.16)

where the right-hand side is a norm-convergent Riemann±Stiltjes integral.

Moreover, [ 2 i a i , i a i ] is the support of {e l }.

Conversely, to any spectral family {e l } of compact support there exists

a unique element a P A such that {e l } is a spectral resolution of a and is

given by (4.16).

From Theorm 4.7 it follows that if A and V are in weak spectral duality,

then A can be considered as the space of all bounded observables on the s -

complete orthomodular lattice 8. Elements of K represent states on 8,
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which are s -additive owing to the pointwise monotone s -completeness of

A. Moreover, the set K is rich for 8. Indeed, we have the following equivalence

valid for projective units h, k:

h # k Û { r P K: ^ k, r & 5 0} , { r P K: ^ h, r & 5 0}

[Alfsen and Shultz, 1976, (4.15)]. But the correspondence between

observables and elements of A may be not one-to-one. Translated to the

language of quantum logics, observables are not uniquely defined by their

expectation values ( ^ a, r & , a P A, r P K), so that the uniqueness property

of Gudder (1966) is not satisfied. To achieve this, we need to strengthen the
condition of weak spectral duality.

According to Alfsen, and Shultz (1976), we say that A and V are in

spectral duality if A is pointwise monotone s -complete and if for every a
P A and l P R there exists a projective face F which is bicompatible with

a (in the sense that F is compatible with a and with all projective faces
compatible with a) and satisfies

a # l on F, a . l on F # (4.17)

Theorem 4.8 (Alfsen and Shultz, 1976, Theorem 7.2). If A and V are in

spectral duality, then every a P A has a unique spectral resolution {e l }. For

given l P R the projective face F l corresponding to e l is the unique member

of ^ which is compatible with a and satisfies (4.17), and the P-projection

P l corresponding to e l is the supremum of all Q P 3 which are compatible

with a and satisfy the inequality Qa # l Qe.

We have the following relation between spectral duality and weak spec-

tral duality: if A and V are in weak spectral duality and every a P A has a

unique spectral resolution, then A and V are in spectral duality (Alfsen and

Shultz, 1976, Theorem 7.5).

Moreover, If A and V are in spectral duality, then there is a one-to-one
correspondence between elements a P A and spectral families {e l } of compact

support given by

a 5 # l de l

where the right side is a norm-convergent Riemann-Stiltjes integral (Alfsen

and Shultz, 1976, Theorem 7.6). In other words, there is a one-to-one corre-
spondence between elements of A and bounded observables on the orthomodu-

lar s -lattice 8 of projective units (Alfsen and Shultz, 1976, Propositions 8.2

and 8.3), and there is a functional calculus (Alfsen and Shultz, 1976, Theorem

8.9) which coincides with that in Varadarajan (1985).
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Now we wish to find conditions under which 8 can be considered as

a u-spectral logic.

Let a: K ® [0, 1] be a convex function. An arbitrary r P V can be
written in the form r 5 l s 2 m t , where s , t P K and l , m P R +. Now a
can be uniquely extended to a bounded linear functional on V, which we also

denote by a. In fact, for every r P V, we obtain by linearity

^ a, r & 5 l ^ a, s & 2 m ^ a, t &

If l s 2 m t 5 l 8 s 8 2 m 8 t 8, where l , l 8, m , m 8 $ 0 and s , s 8, t , t 8 P K,

then l ^ a, s & 2 m ^ a, t & 5 l 8 ^ a, s 8 & 2 m 8 ^ a, g 8 & . To verify this, evaluate the

linear functional e at both sides of l s 2 m t 5 l 8 s 8 2 m 8 t 8 to obtain l 1
m 8 5 l 8 1 m . We denote this common value by a . Then dividing by a , we

obtain the quaility of two convex combinations

l a 2 1 s 1 m 8 a 2 1 s 8 5 m a 2 1 t 1 l 8 a 2 1 s

Since a preserves convex combinations, the desired result follows. Moreover,

) ^ a, r & ) 5 ) l ^ a, s & 2 m ^ a, t & ) # l 1 m 5 i r i
which proves i a i # 1.

Let a be a bounded positive linear functional on V. Then a/ i a i restricted

to K is a convex functional which maps K into [0, 1]. It follows that positive

linear functionals on V are in one-one correspondence with convex functionals

on K with values in [0, 1]. This yields the following result.

Theorem 4.9. Let (A, e) and (V, K) be an order unit and a base norm

space in spectral duality. Then the set of projective units (8, K) is a u-

spectral logic iff A 5 V*.

Proof. Every convex functional a: K ® [0, 1] extends to a positive

bounded linear functional aÄ in V*, hence aÄ P A in case V* 5 A.

Conversely, if every convex functional a: K ® [0, 1] corresponds to an
element in A, then since every positive bounded linear functional in V*

restricted to K is a convex functional from K to [0, 1], and since V* is

generated by positive functionals, we get V* 5 A. n

5. U-SPECTRAL LOGICS WITH CONDITIONING

In this section we consider a u-spectral logic (L, M). We shall find

conditions under which the corresponding order-unit and base-norm spaces

are in spectral duality.
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After Pool (1968a, b), and Guz (1980), let us define to each a P L a

mapping Ea of the set of states M into itself whose domain is the set D (Ea)

: 5 {m P M: m(a) . 0} such that2

(C1) (Eam)(a) 5 1 for all m P D (Ea)

(C2) Eam 5 m whenever m (a) 5 1

The following properties of Ea are easily verified:

(i) 0 , a # b Þ EbEam 5 Ea m for all m P D (Ea). Indeed, Eam (a)
5 1 by (C1), and hence by (C2), EbEam 5 Eam.

(ii) a ’ b (a, b P L \ {0}) implies Eam (b) 5 0 for each m P D (Ea).

Indeed, Eam (a8) 5 0 by (C1) and b # a8.

It will be convenient to pass from Ea to Pa: V 1 ® V+ defined by

Pax 5 ^ a, x & Ea 1 x

i x i 2 when ^ a, x & . 0

Pax 5 0 when ^ a, x & 5 0

Pa is defined also for a 5 0, and clearly P0 5 0. The following properties

of Pa are easily verified:

(i) i Pax i 5 ^ a, x & 5 ^ a, Pax &
(ii) For every x P V+ and t $ 0, Pa(tx) 5 tPax

(iii) i Pa x i # i x i , and i Pax i 5 i x i iff Pax 5 x
(iv) a # b (a, b P L) implies PbPa 5 Pa; in particular, P2

a 5 Pa

(v) a ’ b (a, b P L) implies PbPa 5 0

Indeed, (i) follows directly from the fact that i x i 5 ^ e, x & .
To prove (ii), observe that

Pa(tx) 5 ^ a, tx & Ea 1 tx

i tx i 2
5 ^ a, tx & Ea 1 x

i x i 2
5 t ^ a, x & Ea 1 x

i x i 2 5 tPa x

2 The mapping Ea has a straightforward physical interpretation. If, after a measurement performed
on a physical system that is initially in the state m, and proposition a is verified to be true,
then the sequential state of the system is Eam.
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The first part of (iii) follows by (i) since i Pa x i 5 ^ a, x & # ^ e, x & .
Assume that i Pax i 5 i x i for some x P V+. If ^ a, x & Þ 0, we have ^ a, x & 5
i x i , hence ^ a, x/ i x i & 5 1, which by (C2) implies that Ea(x/ i x i ) 5 x/ i x i . If
^ a, x & 5 0, we get from ^ a, x & 5 ^ e, x & that x 5 0 5 Pax. This proves the

second part of (iii).

If a # b, a, b P L, we get for any x P V+ that i PbPax i 5 ^ b, Pax & $
^ a, Pax & 5 i Pax i . The inverse inequality follows by (iii). Hence i PbPax i 5
i Pax i , and by the second part of (iii), PbPax 5 Pa x. This proves (iv).

If a ’ b a, b P L, by (i) we have

i PaPbx i 5 ^ a, Pbx & # ^ b8, Pbx &

5 ^ e, Pbx & 2 ^ b, Pbx & 5 0

so that PaPbx 5 0, hence (v) is proved.

Lemma 5.1. The map Pa: m j Pam is affine, i.e., for any m1, m2 P M
and t P [0, 1].

Pa(tm1 1 (1 2 t)m2) 5 tPam1 1 (1 2 t)Pam2

Proof. Since the norm i ? i is additive on V+, we have

i tPa(m1) 1 (1 2 t)Pa(m2) i 5 i tPa(m1) i 1 i (1 2 t)pa(m2) i
5 t i Pa(m1) i 1 (1 2 t) i Pa(m2) i
5 t ^ a, m1 & 1 (1 2 t) ^ a, m2 &

5 ^ a, tm1 1 (1 2 t)m2 &

5 i Pa(tm1 1 (1 2 t)m2 i
and the result follows by (iii). n

Obviously, Pa may be uniquely extended to a linear mapping acting on

the whole space V. It will be also denoted by Pa , as this does not lead to a
misunderstanding.

Proposition 5.2. For each a P L and each bounded observable A P
2+(L), there is a bounded observable B P 2+(L) such that ^ B, m & 5 ^ A, Pa(m) &
for all m P M.

Proof. Assume 0 , A # I. Then m ® ^ A, Pam & is a convex mapping

from M to [0, 1], hence there is an observable B P 2(L) such that ^ B, m & 5
^ A, Pam & for each m P M. If A Þ 0, consider 0 , A/ i A i # I and put B 5
i A i B1, where B1 is such that ^ B1, m & 5 ^ A/ i A i , Pa m & for each m P M.

If A 5 0, clearly, ^ A, Pam & 5 0 for each m, hence B 5 0. n
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Obviously, B is unique and we denote it by QaA. It is easy to show that

the mapping A j QaA is positive homogeneous. It can be extended to a

linear positive mapping at the whole 2(L) into itself. We shall call Pa a filter
and Qa a dual filter.

Lemma 5.3. For any a P L, the mapping Pa: V ® V is continuous with

respect the weak topology in V given by the duality ^ .,. & .

Proof. Let {m a } be a net such that ma ®
w

m, i.e., ^ x, m a & ® ^ x, m & for

all x P 2(L). By Proposition 5.2, there is a positive linear mapping Qa: 2(L)

® 2(L) such that ^ x, Pam a & 5 ^ Qa x, m a & ® ^ Qa x, m & 5 ^ x, Pa m & , i.e., Pam a

®
w

Pam. n
We say that two filters Pa , Pb are compatible and write Pa % Pb if for

each state m P M,

i Pb(Pa 1 Pa8)m i 5 i Pbm|, i Pa(Pb 1 Pb8)m i 5 i Pam i
From the definition it follows easily that

Pa % Pb iff Pb % Pa

Pa % Pb implies Pa8 % Pb

Pa % Pb implies Pa % Pb8

Passing to dual filters, we define Qa % Qb iff Pa % Pb. Moreover, we define

compatibility of a dual filter Qa with b P L by Qa % b iff Qa % Qb , and if

A P 2(L), define Qa % A iff QaA 1 Qa8 A 5 A.

It is not difficult to see that for every a P L, Pa and Qa are positive

projections (i.e., idempotent linear mappings). Recall that a weakly continuous

and positive projection P on V is said to be neutral if it is of norm at most
one and i P r i 5 i r i Þ r P im+P whenever r P V+. We see from the properties

(i)±(iii) of Pa: V+ ® V+ that every Pa is neutral.

Lemma 5.4. If Qa % QA(E) for all E P @( R ), then Qa % A.

Proof. From Qa % QA(E) for all E P @( R ) we have, for any x P V+,

i PA(E)Pax i 1 i PA(E) Pa8x i 5 i PA(E)(Pa 1 Pa8)x i
5 i PA(E)x i

Then for all x P M,

^ Qa A 1 Qa8 A, x & 5 #
`

2 `

tPax (A (dt)) 1 #
`

2 `

tPa8x (A (dt))

5 #
`

2 `

t i PA(dt)Pax i 1 #
`

2 `

t i PA(dt)Pa8x i
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5 #
`

2 `

t i PA(dt)x i

5 #
`

2 `

tx(A (dt)) 5 ^ A, x &

which leads to QaA 1 Qa8A 5 A. n

Proposition 5.5. Let (L, M) be a u-spectral logic such that a mapping

a ® Ea satisfying (C1) and (C2) is defined on L. The following statements
are equivalent [A P 2(L), a, b P L]:

(i) If A $ 0, then Qa % A if and only if QaA # A.

(ii) Every Pa is a P-projection and so is Qa.

(iii) For given A P 2+(L) the observables, B 5 QaA and C 5 Qa8A are
the only elements of 2+(L) such that:

(1) B 5 A on ker+Pa8, B 5 0 on im+Pa8

(2) C 5 A on ker+Pa, C 5 0 on im+Pa

Proof. (i) Þ (ii): We shall show that Pa and Pa8 are quasicomplementary,
i.e., im+Pa 5 ker+Pa8 and im+Qa 5 ker+Qa8. By the symmetry reason we shall

then have im+Pa8 5 ker+Pa and im+Qa8 5 ker+Qa

Let x P im+Pa; then x 5 Pax, so that Pa8x 5 Pa8Pa x 5 0. Thus we have

shown that im+Pa # ker+Pa8. Now let us assume that x P ker+Pa8. Then we get

i x i 5 ^ e, x & 5 ^ a, x & 1 ^ a8, x &

5 i Pax i 1 i Pa8x i 5 i Pax i
and neutrality of Pa implies that Pax 5 x, hence x P im+Pa . This show that

ker+Pa8 # im+Pa , and this completes the proof that im+Pa 5 ker+Pa8.
Now we shall pass to the proof that im+Qa 5 ker+Qa 8. Assume that

A P im+Qa. Then QaA 5 A, so that for arbitrary x P V+, we have ^ A, x & 5
^ A, Pax & , hence for any state m P M, ^ A, Pa8m & 5 ^ A, PaPa8m & 5 0 or,

equivalently, ^ Qa8A, m & 5 0. This equality, valid for any m P M, implies

Qa8A 5 0, hence A P ker+Qa8. This proves that im+Qa # ker+Qa 8. To prove

the converse inclusion, assume that A P ker+Qa8. Then Qa8A 5 0 , A, so
that Qa8 % A, and hence

A 5 QaA 1 Qa8A 5 QaA

i.e., A P im+Qa. Thus ker+Qa8 5 im+Qa.
(ii) Û (iii): Taking into account that every Pa is neutral, the equivalence

follows by Alfsen and Shultz (1976), Theorem 2.6.

(iii) Þ (i): Follows by Alfsen and Shultz (1976), Proposition 5.1: If Qa

and A (A $ 0) are compatible, then A 5 QaA 1 Qa8A $ QaA. Conversely,
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if QaA # A, then A 2 Qa A $ 0, and Qa (A 2 QaA) 5 QaA 2 QaA 5 0.

Thus A 2 QaA 5 Qa8(A 2 QaA) 5 Qa8A, and so A 5 QaA 1 Qa8A. n

Theorem 5.6. If one of the equivalent conditions (i)±(iii) of Proposition

5.5 is satisfied, then V and 2(L) are in weak spectral duality, i.e., for every

A P 2(L) every l P R , there is a projective face compatible with A such that

A # l on F, a . l on F #

Moreover, V and 2(L) are in fact in spectral duality.

Proof. It suffices to prove the statement for l 5 0. For l Þ 0, we

consider A 2 l I instead of A.

Observe that for any D P @( R ) we have, using properties (iv) and (v)
of Pa ,

QA( D ) A 5 QA( D ) # tA(dt)

5 # D

tQA( D ) A (dt) 1 # D 8

tQA( D ) A (dt)

5 # D

tA(dt)

hence QA( D ) A # A and by the assumptions, QA( D ) % A.

Exchanging A by 2 A if necessary, we may assume that (spA ) ù R + Þ
{0} and define

s 5 inf{t . 0: t P spA} $ 0

Two cases may occur.

1. s . 0. In this case we have (0, s) ù spA 5 0/ , so that for m P F,

where F is the projective face corresponding to PA( 2 ` , s), we get m (A ( 2 ` ,

s)) 5 1, so that

^ A, m & 5 # spA

t ^ A (dt), m & # 0

On the other hand, for m P F #, F # being the projective face associated with

PA[s, ` ), we obtain

^ A, m & 5 # spA

t ^ A (dt), m & $ s $ 0

so that our statement is proved.
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2. s 5 0. Let F 5 im+ PA( 2 ` ,0), as before. Let {tn}, tn ¯ 0, tn $ 0, tn P spA,

and let R1 5 QA[t1, ` ), Rn 5 QA[tn,tn 2 1), n 5 2, 3, . . . . Since for each i we have

R1 1 Ç R2 1 Ç ? ? ? 1 Ç Ri 5 QA[ti, ` ) % A

and A $ 0 on Fi , the projective face associated with R1 1 Ç R2 1 Ç ? ? ? 1 Ç Ri , we

get that A . 0 on F0, the projective face corresponding to R1 1 Ç R2 1 Ç ? ? ? 1 Ç Ri

5 QA[0, ` ), and the latter shows that F0 5 F #. Obviously, on F we have a # 0.
The last statement follows by the fact that every a P A has a unique

spectral resolution with respect to elements in L, which by Lemma 2.7 (see

also the remark after Theorem 4.7) coincides with extreme points 21(L), and

hence with the projective units. By Alfsen and Shultz (1976), Theorem 7.5,

if A and V are in weak spectral duality and every a P A has a unique spectral

resolution, then A and V are in spectral duality. n

If the conditions of Theorem 5.6 are satisfied, then we have the following

relation with Alfsen and Shultz theory: A corresponds to the set 2(L) of all

bounded observables on L, V is the ordered linear space induced by the
convex cone base M. In addition, A and V are in spectral duality, V coincides

with the set of all bounded linear functionals on 2(L), the set of order units

8 corresponds to L, the projective faces on M correspond to the sets {m P
M: m (a) 5 1} for a P L, and P-projections are the mappings Qa , a P L.

Conversely, let (A, e) and (V, K) be in order and norm duality. Let the

conditions (4.10) and (4.11) be satisfied. Then the set L [ 8 of all projective
units of A is a s -complete orthomodular lattice (Alfsen and Shultz, 1976,

Propositon 4.2). For every x P K, denote by m x the state of L defined by

m x(a) 5 ^ a, x &

Assume that m x(a) Þ 0 and define, for any a P L,

Eax : 5
Px

i Px i
where P is the P-projection on V such that P*e 5 a. Is is easy to see that

conditions (C1) and (C2) are satisfied. Indeed, (C1):

m Eax(a) 5 ^ a, Eax & 5 K a,
Px

i Px i L
5 K P* e,

Px

i Px i L 5 K e,
P2 x

i Px i L
5 K e,

Px

i Px i L 5 i Px i
i Px i 5 1
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(C2): If m x (a) 5 1, then

^ a, x & 5 ^ P*e, x & 5 ^ e, Px & 5 i Px i 5 1

and hence x P im+P by (4.7), i.e., Px 5 x, whence Ea x 5 x.

If b P L is compatible with a, and b 5 Qe (Q is a P-projection in A), then

m Eax(b) 5 ^ b, Eax & 5 K Qe,
Px

i Px i L
5 K P*Qe,

x

i Px i L 5 K P* Ù Qe,
x

i Px i L
5 K P*e Ù Qe,

x

i Px i L 5
m x(a Ù b)

m x(a)

Using similar arguments as in Edwards and RuÈ ttimann (1990), it can
be shown that

n 5 m Px/ i Px i

is the unique element in D : 5 { m x : P K} such that

n (b) 5
m x(a Ù b)

m x(a)

for any b P L compatible with a.

So for any a P L, Qa is a P-projection such that Qae 5 a, and Qa % b
iff Qab # b means that a % b iff Qab 5 a Ù b.

As a conclusion, we obtain the following result:

Theorem 5.7. Let (L, M) be a u-spectral logic. Then (2(L), q1) and (V,

M) are order unit and base norm space in spectral duality if and only if there

is a mapping a j Ea satisfying (C1), (C2), and one of the equivalent conditions

of Proposition 5.5.

ACKNOWLEDGMENT

This work was supported by grant no. 4033/97 of the Slovak Academy

of Sciences.

REFERENCES

Alfsen, E. M. (1971). Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin.

Alfsen, E. M., and Shultz, F. W. (1976). On non-commutati ve spectral theory for affine function

spaces on convex sets, Memoirs of the American Mathematical Society, 6(172) (1976).



2332 PulmannovaÂ

Alfsen, E. M., Shultz, F. W., and Stormer, E. (1978). A Gelfand±Neumark theorem for Jordan

algebras, Advances in Mathematics, 28, 11±56.

Asimov, L., and Ellis, A. J. (1980). Convexity Theory and Its Applications in Functional

Analysis, Academic Press, New York. (1981).

Beltrametti, E. G., and Cassinelli, G. (1981). The Logic of Quantum Mechanics , Addison-

Wesley, Reading, Massachusetts.

Birkhoff, G., and von Neumann, J. (1936). The logic of quantum mechanics, Annals of Mathe-

matics, 37, 823±843.

Edwards, C. M., and RuÈ ttimann, G. T. (1990). On conditional probability in GL spaces,

Foundations of Physics, 20, 859±872.

Foulis, D. J., and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics, Founda-

tions of Physics, 24, 1331±1352.

Gudder, S. P. (1965). Spectral methods for a generalized probability theory, Transactions of

the American Mathematical Society, 119, 428±442.

Gudder, S. P. (1966) Uniqueness and existence properties of bounded observables, Pacific

Journal of Mathematics, 19, 81±93; correction, ibid. 588±589.

Guz, W., (1980). Conditional probability in quantum axiomatics, Annales de l’ Institut Henri

PoincareÂA 33, 63±119.

Hudson, R. L., and PulmannovaÂ, S. (1993). Sum logics and tensor products, Foundations of

Physics, 23, 999±1024.

Iochum, B. (1984). CoÃnes Autopolaires et AlgeÁ bres de Jordan , Springer-Verlag, Berlin, 1984.

Mackey, G. W. (1963). The Mathematical Foundations of Quantum Mechanics , Benjamin,

New York.

Navara, M. (1995). Uniqueness of bounded observables, Annales de l’ Institut Henri PoincareÂ

A, 63, 155±176.

Pool, J. C. T. (1968a). Baer*-semigroups and the logic of quantum mechanics, Communication s

in Mathematical Physics, 9, 118±141.

Pool, J. C. T. (1968b). Semimodular ity and the logic of quantum mechanics, Communication s

in Mathematical Physics, 9, 212±229.

PtaÂk, P., and PulmannovaÂS. (1991). Orthomodular Structures as Quantum Logics, Kluwer,

Dordrecht. (1981).

RuÈ ttimann, G. (1981). Detectable properties and spectral quanatum logics, in Interpretations

and Foundations of Quantum Theories, H. Neumann, ed., Mannheim, pp. 35±47.

Schafer, R. (1966). An Introduction to Nonassociative Algebras, Academic Press, New York.

Varadarajan, V. S. (1985). Geometry of Quantum Theory, Springer Verleg, Berlin.


